Recipes for Experiment Tracking and Hyperparameter Optimization

normalize_str[source]

normalize_str()

Convert spaces to underscore, and lowercase all chars. For s:str: use built-in python methods For s:pd.Series: use pandas methods

Note on Hyperparameter Importance

Things to tune first:

  • Learning rate (lr_find + scheduler)
  • Loss function
  • Model architecture (layer params, number of layers)
  • Initialization and regularization

Stuff that sounds cool but generally not as useful:

  • Optimizer stuff
  • Activation function

WandB

  • Track experiments and save to the WandB site.

Setup

  • Ensure you have a valid in .env. Otherwise, set it in python:
import os
os.environ['WANDB_NOTEBOOK_NAME'] = 'notebook.ipynb'
os.environ['WANDB_NAME'] = 'Name of this run'
os.environ['WANDB_NOTES'] = 'Subheading'
# os.environ['WANDB_MODE'] = 'offline'                    # enable for local mode
# os.environ['WANDB_BASE_URL'] = 'http://localhost:9595'  # enable for local mode
  • Login (need to register on WandB site first)
import wandb
wandb.login()
  • Start a run:
params = {}

with wandb.init(project='project_name', dir='../../artifacts/wandb/', config=params) as run:
    pass  # do model stuff here

Watch and log changes

  • Set wandb.watch to log changes when model updates
  • Log specific parameters (e.g. loss) with wandb.log
wandb.watch(model)

for epoch in epochs:
    for batch_num, Xs, ys in enumerate(dataloaders):

        # model code
        metrics = train_one_batch(...)

        if batchnum % k == 0:
            wandb.log(metrics)

fastai & keras

  • If running fastai or keras, watching and logging are already implemented in WandbCallback.
  • You still need to save the actual model afterwards.

You can implement by hooking into the callback system:

  • fastai: learner.fit(..., cbs=[WandbCallback])
  • keras: model.fit(..., callbacks[WandbCallback])

Save artifacts

  • For consistency, save to ONNX.
torch.onnx.export(
    model,
    args,  # any tensor that matches input shape -- ok to use your input data
    'model.onnx',
    input_names=feature_col_names,
    output_names=target_col_name
)

wandb.save('model.onnx')

Sweeps (Hyperparameter Optimization)

  • Declare parameter settings
    #sweep.yml
      method: bayes
      metric:
        goal: minimize
        name: grid
      parameters:
        dropout:
          values: [0.1, 0.2, 0.3, 0.4]
        learning_rate:
          values: [0.001, 0.0001, 0.00001]
      early_terminate:
        type: hyperband
          min_iter: 20
    

Run from notebook

Note that you will have to wrap your training loop into a function.

with open('sweep.yml') as f:
    sweep_config = yaml.base_load(f)

sweep_id = wandb.sweep(sweep_config)
wandb.agent(sweep_id, function=train)

Run from terminal

wandb sweep sweep.yml
wandb agent {value_of_output_above}

MLFlow

Track experiments.

Define tracking server, or local

  • Run artifacts are saved to the tracking URI
import mlflow

mlflow.set_tracking_uri('file:///home/andrew/notes/artifacts/mlruns')
  • And available through the web UI via mlflow ui --backend-store-uri file:///home/andrew/notes/artifacts/mlruns

Start tracking experiments

  • Some common model frameworks (e.g. sklearn, LightGBM, PyTorch) have built-in auto-logging for artifacts (e.g. model files, feature importance charts)
with mlflow.start_run() as run:
    mlflow.lightgbm.autolog()
    
    # model code here
  • Otherwise you can to track artifacts manually
with mlflow.start_run() as run:
    model_file = 'model.pkl'
    
    mlflow.log_artifacts({'model_file': model_file})
  • You can also log parameters and metrics
with mlflow.start_run() as run:
    params = {'lambda': 0.1, 'num_leaves': 8}
    metrics = {'mse': 1234}
    
    mlflow.log_params(params)
    mlflow.log_metrics(metrics)

TensorBoard

  • Good for small projects
  • WandB and MLFlow better overall

Data Version Control (DVC)

Setup

dvc init && git commit -m "init dvc"

If you are currently tracking data with git, stop tracking:

git rm -r --cached "data" && git commit -m "stop tracking data"

Add dvc remote:

dvc remote add -d {name} s3://{bucketname} && \
# dvc remote modify {name} endpointurl {minio_url} && \  # only if using Minio
git add .dvc/config && \
git commit -m "add {name} as remote"

Data Tracking

Start tracking with:

dvc add data && git commit -m "start tracking data with dvc"

Push to remote:

dvc push

Other commands are like git. You can dvc push, dvc pull, dvc checkout, etc.

Experiment Tracking

  • You can do experiment tracking from DVC.
  • AFAIK, this works best when your models can be run in .py files.
  • I like to use the Notebook, so I prefer WandB.

Optuna

LightGBM, XGBoost, Catboost, sklearn, etc.

This example shows LightGBM, but the idea is the same for similar models like XGBoost, sklearn, etc.

Setup training code

  • Wrap LightGBM training code in an objective function
  • Replace hyperparameters to search with trial.suggest_{type}
from pathlib import Path
artifacts = Path('../../artifacts')

df = pd.read_csv('https://raw.githubusercontent.com/tidyverse/ggplot2/master/data-raw/diamonds.csv')
categories = {
    'cut':     {'ordered': True, 'categories': ['Fair', 'Good', 'Very Good', 'Premium', 'Ideal']},
    'color':   {'ordered': True, 'categories': ['J', 'I', 'H', 'G', 'F', 'E', 'D']},
    'clarity': {'ordered': True, 'categories': ['I1', 'SI2', 'SI1', 'VS2', 'VS1', 'VVS2', 'VVS1', 'IF']},
}
    
df2 = categorize(df, categories)
carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
def objective(trial):
    X = df.drop('price', axis=1)
    y = df[['price']]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    train = lgb.Dataset(X_train, y_train)
    
    params = {
        "objective": "mse",
        "metric": "mae,mse",
        "verbosity": -1,
        "boosting_type": "gbdt",
        "lambda_l1": trial.suggest_float("lambda_l1", 1e-8, 10.0, log=True),
        "lambda_l2": trial.suggest_float("lambda_l2", 1e-8, 10.0, log=True),
        "num_leaves": trial.suggest_int("num_leaves", 2, 256),
        "feature_fraction": trial.suggest_float("feature_fraction", 0.4, 1.0),
        "bagging_fraction": trial.suggest_float("bagging_fraction", 0.4, 1.0),
        "bagging_freq": trial.suggest_int("bagging_freq", 1, 7),
        "min_child_samples": trial.suggest_int("min_child_samples", 5, 100),
        'nthreads': 1  # for compatibility
    }
    
    model = lgb.train(params, train)
    preds = model.predict(X_test)
    return mse(y_test, preds)
    

Search hyperparameters

  • Optuna logs to stdout by default.
  • If in notebook, consider redirecting logs to a log file to keep notebook tidy.
import logging
logger = logging.getLogger()
logger.addHandler(logging.FileHandler(artifacts / 'optuna.log', mode='a'))
optuna.logging.enable_propagation()
optuna.logging.disable_default_handler()
study = optuna.create_study(study_name='testing', direction='minimize')
study.optimize(objective, n_trials=10)

Save results

Save parameters to a CSV for tracking

results = study.trials_dataframe()
results.to_csv(artifacts / 'optuna_study.csv')

You can also log parameters to WandB with this hook:

log_study_wandb[source]

log_study_wandb(study, value_name=None, wandb_kwargs={})

log_study_wandb(study,
    wandb_kwargs={'project':'optuna', 'name':'hyperparam search', 'job_type':'logging'}
)
fig = optuna.visualization.plot_param_importances(study)
show_plotly(fig)

Ray Tune

BoTorch